The porcupine gene is required for wingless autoregulation in Drosophila.

نویسندگان

  • A S Manoukian
  • K B Yoffe
  • E L Wilder
  • N Perrimon
چکیده

The Drosophila segment polarity gene wingless (wg) is required in the regulation of engrailed (en) expression and the determination of cell fates in neighboring cells. This paracrine wg activity also regulates transcription of wg itself, through a positive feedback loop including en activity. In addition, wg has a second, more direct autoregulatory requirement that is distinct from the en-dependent feedback loop. Four gene products, encoded by armadillo (arm), dishevelled (dsh), porcupine (porc) and zeste-white 3 (zw3), have been previously implicated as components of wg paracrine signaling. Here we have used three different assays to assess the requirements of these genes in the more direct wg autoregulatory pathway. While the activities of dsh, zw3 and arm appear to be specific to the paracrine feedback pathway, the more direct autoregulatory pathway requires porc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential requirements for segment polarity genes in wingless signaling

The segment polarity genes wingless and engrailed are required throughout development of Drosophila. During early embryogenesis, these two genes are expressed in adjacent domains, in an inter-dependent way. Later, their expression is regulated by different mechanisms and becomes maintained by auto-regulation. To dissect the genetic requirements for the initial signaling between wingless and eng...

متن کامل

Rab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila

In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...

متن کامل

Wingless signaling in the Drosophila embryo: zygotic requirements and the role of the frizzled genes.

Wingless signaling plays a central role during epidermal patterning in Drosophila. We have analyzed zygotic requirements for Wingless signaling in the embryonic ectoderm by generating synthetic deficiencies that uncover more than 99% of the genome. We found no genes required for initial wingless expression, other than previously identified segmentation genes. In contrast, maintenance of wingles...

متن کامل

Indirect autoregulation of a homeotic Drosophila gene mediated by extracellular signaling.

Commitments to developmental pathways are often made and maintained in groups of cells. Such commitments are conferred by the products of selector genes, many of which are homeobox genes. Homeobox genes can maintain their expression by directly autoregulating their own transcription. Here, we report a case where positive autoregulation of Ultrabithorax, a homeotic Drosophila gene, is at least p...

متن کامل

Regulation of Wingless and Vestigial expression in wing and haltere discs of Drosophila.

In the third thoracic segment of Drosophila, wing development is suppressed by the homeotic selector gene Ultrabithorax (Ubx) in order to mediate haltere development. Previously, we have shown that Ubx represses dorsoventral (DV) signaling to specify haltere fate. Here we examine the mechanism of Ubx-mediated downregulation of DV signaling. We show that Wingless (Wg) and Vestigial (Vg) are diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 121 12  شماره 

صفحات  -

تاریخ انتشار 1995